A Standardized, Predictable On-chip Power Control Infrastructure

Ashley Crawford
Power Architect & Distinguished Engineer

Arm Tech Symposia 2017
SoC power control requirements

Power efficient IP that participate in system level power management

• Standard interfaces for clock and power control

Power control infrastructure

• Configurable and re-usable clock and power control components
• Eliminate a time-consuming, error-prone per-project development task

Power management coordination

• Standard software interfaces
• Appropriate balance of software direction and hardware autonomy
Standard interfaces: AMBA Q-Channel & P-Channel

Component indicates activity requirement

- **Q-Channel**: QACTIVE signal ➞ clock and simple power control
- **P-Channel**: PACTIVE for each mode ➞ complex power control

Controller requests a change in mode

- Based on xACTIVE signals, system conditions and software
- **P-Channel** supports multiple modes using **PSTATE**

Component accepts or denies the request

- According to internal conditions
- Controller completes power or clock transition

ARM IP support

Wide adoption of Q-Channel and P-Channel across Arm Cortex, CoreLink, CoreSight & Mali IP

- P-Channel implementation using standard power mode set
- ARM *Power Control System Architecture* (PCSA) provides design guidelines

Now, we need a clock and power control infrastructure...
Infrastructure: controller components

Power Policy Unit

- Highly configurable power domain controller
- Supports directed and autonomous control
- Software, component & power switch control interfaces

Clock controller

- Controller for high-level clock gating (HCG)
- Manages HCG for a single clock domain
- HCG supported by many ARM IP products
Clock control integration

Many ARM IP support high-level clock gating (HCG) with Q-Channel

- Transaction level clock gating
- Near zero idle dynamic power
 - Gating at root of clock tree

Low power interfaces from all components in a clock domain combined at controller

- Avoids duplicate clock paths to ease clock insertion

Complementary to clock gating inside component

- HCG acts at coarser time grain
Power control integration

The PPU is technology *independent*

- Highly-configurable logical solution
- From IoT to high-end system needs
- Low-power interface (LPI) can be Q-Channel or P-Channel

Power control state machine (PCSM) is technology *dependent*

- Simple state machine specific to SoC strategy
- PPU provides a minimal P-Channel to interface the PPU to a PCSM
Power control infrastructure
Power control infrastructure

Power Policy Unit

Power Interconnect

Mali IP

Clock Controller

CoreLink interconnect

Clock Controller

Cortex-A processor

Clock Controller

Clock Controller

P-Channel
Q-Channel
Configuration (APB)
Controller

© 2017 Arm Limited
Infrastructure: power interconnect components

Q-Channel distributor
- 1:N fan-out from a controller to components
- Can be configured for expansion and sequencing

P-Channel distributor
- 1:N fan-out from controller to components
- Can be configured for expansion and sequencing
- Configurable re-mapping of power modes
Infrastructure: power interconnect components

Q-Channel combiner
- N:1 fan-in from controllers to a component
- For control of power/voltage domain bridges
- Bridge must ‘close’ before any side powered-off
- Bridge cannot ‘open’ until both sides powered-on

P-to-Q converter
- 1:1 protocol conversion
- For integrating Q-Channel components into power domains with P-Channel PPU
Power control infrastructure

- Power Policy Unit
- LPD-Q
- LPC
- P2Q
- LPD-P
- Mali IP
- Clock Controller
- CoreLink interconnect
- Cortex-A processor
- Clock Controller

- P-Channel
- Q-Channel
- Configuration (APB)
- Controller
- LPI Interconnect
System view

Power control infrastructure is envisaged to be distributed in a complex SoC

- Functional encapsulation of SoC subsystems
- Lower latency local control for autonomous modes
- Approach used in Arm system guidance (SGM)

Coordination by System Control Processor (SCP)

- Embedded microcontroller for power management
- Arm SCMI* for commands from OS and other agents
- SCP is system aware – reconciles SW and platform constraints to select optimal policy
- Hardware assist from PPU for autonomous power transitions

Arm CoreLink PCK-600 Power Control Kit

Modern SoC requires multiple clock and power domains
- Management of multiple domains is complex

Standardized SoC Power and Clock Management Implementation
- Implements Arm Power Control System Architecture (PCSA) guidelines
- Easing power and clock control SoC integration

Power and Clock Management IPs in a complete package
- Pre-verified components to accelerate time-to-market

Available early 2018
Optimized for DynamIQ

Power and Clock Management Kit
- Easing power and clock control SoC integration
- Pre-verified components to accelerate time-to-market

Compliance with Arm low power standards
- Arm Low Power Interface (LPI) architecture for interoperability with latest Arm IP
- Implements Arm Power Control System Architecture (PCSA) guidelines

PCK-600 components
- PPU – Power Policy Unit
- Clock Controller
- LPD-P, LPD-Q – P and Q-Channel Distributors
- P2Q – P-to-Q Converter
- LPC – Q-Channel Combiner
Summary

A standardised power control infrastructure eases the path to implementing multiple power and clock domains

➢ Low power within the project schedule

Configurable components increase re-use and improve TTM

➢ Common design approach and standardised power modes
➢ Eases 3rd party & legacy IP integration in addition to supporting ARM IP roadmap
➢ Low power without error-prone project specific design work

Arm CoreLink PCK-600 power control kit available to partners in early 2018
The Arm trademarks featured in this presentation are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks