Low Power System Design Using Atmel ARM® Cortex®-based Products
Low Power System

• What’s driving low power system?
 • System power budget constrain
 • Long battery life
 • Specification of application mandatory
 • Green power law/rule

• Low power System key Consideration
 • Low power consumption in running status
 • Low power consumption in sleep status
 • Stay on the sleep status as much time as it can
 • Fast wake up to avoid data or event handle miss
Atmel ARM-based Cortex-M Flash MCU Roadmap

CM3/4 Available Now CM4 Development CM0+ Development

16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB

- SAM D20 Q4 2013
- SAM D21 Q4 2013
- SAM3N
- SAM3S Q4 2013
- SAM4S
- SAM4N
- SAM3U
- SAM3X
- SAM3A
- SAM4E
- SAM4L Q3 2013

Atmel picoPower
General Purpose
Connectivity
Atmel picoPower

12-Year Lifetime Commitment
Introducing Atmel SAM D20 & SAM D21 Series
Powerful and Efficient Products

- Atmel SAM D20 and D21 Product Series
 - 48MHz operation
 - Up to 2.14 CoreMark®
 - ±2% int RC oscillator
 - 1.62V-3.63V
 - 16KB to 256KB Flash
 - 32-, 48- and 64-pin versions
Series Features

- Atmel SAM D20 Differentiating Features
 - Event system
 - SERCOM modules configurable as I2C, USART or SPI
 - Capacitive Touch HW engine
 - 12-bit 350ksps ADC with gain stage
 - 10-bit 350ksps DAC

- Atmel SAM D21 Additional Features
 - Full speed USB from internal RC
 - DMA
 - I2S
 - Fractional PLL
 - Enhanced Timer/Counters
 - Complimentary outputs
 - Dead time insertion
 - High resolution PWM
Target Applications

- Atmel SAM D20 and SAM D21
 - Toys
 - Board controllers
 - Wireless applications
 - Sensor interfaces
 - Gaming
 - Medical
 - White goods
 - Set-top boxes
 - Electric tools

- Atmel SAM D21
 - PC peripherals
 - Motor control
 - Lighting
 - Communication bridges
 - Audio
SAM4L Family Overview

Two series for maximum flexibility

<table>
<thead>
<tr>
<th></th>
<th>SAM4LC Series</th>
<th>SAM4LS Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pins</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>LCD</td>
<td>4x40</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>4x23</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>4x13</td>
<td>No</td>
</tr>
<tr>
<td>Hardware Crypto</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>USB</td>
<td>Host and Device</td>
<td>Device</td>
</tr>
<tr>
<td></td>
<td>Host and Device</td>
<td>Device</td>
</tr>
<tr>
<td></td>
<td>Host and Device</td>
<td>Device</td>
</tr>
<tr>
<td>GPIO</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>32</td>
</tr>
<tr>
<td>I²C</td>
<td>2 Master + 2 Master/Slave</td>
<td>2 Master + 2 Master/Slave</td>
</tr>
<tr>
<td></td>
<td>2 Master/Slave</td>
<td>1 Master/Slave</td>
</tr>
<tr>
<td></td>
<td>1 Master/Slave</td>
<td>2 Master/Slave</td>
</tr>
<tr>
<td></td>
<td>2 Master/Slave</td>
<td>1 Master/Slave</td>
</tr>
</tbody>
</table>
SAM4L Device Details

The world’s most efficient Cortex-M4

• picoPower® Technology
 • Industry’s lowest power consumption
 • Active mode: down to 90µA/MHz
 • Full RAM retention: 1.5µA
 • 1.68 – 3.6V operation
 • No degraded performance
 • Fast wake-up
 • 1.5µs
 • Peripheral Event System
 • SleepWalking™

• Integrated Hardware QTouch®
 • Wake up from a touch of a button or proximity

• Segment LCD Controller
 • 4x40 segments

<table>
<thead>
<tr>
<th>SAM4L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
</tr>
<tr>
<td>Flash</td>
</tr>
<tr>
<td>SRAM</td>
</tr>
<tr>
<td>USART</td>
</tr>
<tr>
<td>SPI</td>
</tr>
<tr>
<td>I2C</td>
</tr>
<tr>
<td>I²S</td>
</tr>
<tr>
<td>Audio DAC</td>
</tr>
<tr>
<td>12-bit ADC</td>
</tr>
<tr>
<td>DAC</td>
</tr>
<tr>
<td>Segment LCD</td>
</tr>
<tr>
<td>USB</td>
</tr>
<tr>
<td>picoPower™</td>
</tr>
<tr>
<td>Capacitive Touch</td>
</tr>
<tr>
<td>Pin count</td>
</tr>
<tr>
<td>Package</td>
</tr>
</tbody>
</table>
SAM4L Target applications

• Industrial
 • Process transmitters
 • Sensors & detectors
 • Sub-meters
 • Sensor hub

• Healthcare
 • Glucose meters
 • Pulse oximetry
 • Human fall detection
 • Blood pressure

• Consumer
 • Sport watches
 • Remote control
 • Toys
 • Sensor hub
picoPower

Advanced power saving techniques for designing low power Cortex-M applications
picoPower™ Technology

- Ultra low active power consumption
 - Down to 90 µA/MHz

- Dynamic Frequency Scaling
 - Change CPU speed in real time

- Ultra fast wake-up
 - 1.5 µs

- SleepWalking™
 - Qualify event before waking system

- Sleeping BOD
 - No BOD power consumption in sleep and Idle

- Low Leakage Process
 - Down to 1.5 µA with full RAM Retention

- True 1.6V operation
 - All modules including Flash and analog working
Superior CPU Performance

- SAM offers superior CPU performance
 - Architecture designed with compiler experts
 - Designed to run from Flash
 - Up to 3.39 CoreMark™ / MHz running from Flash

- DSP instruction set in Cortex-M4
 - Single cycle multiply and accumulate
 - Optimized DSP library by Atmel experts

- High Code Density
 - Increased performance
Dynamic Power Management

- Multiple clock domains
 - Tune domain clocks for performance vs. power consumption

- Dynamic Frequency Scaling (DFS)
 - Reduce power consumption when maximum speed is not required
 - Change CPU speed in real time
 - Adapt to changes in workload

- Individual peripheral clock control
 - Tune clock speed to match required performance
 - Stop unused peripherals
Peripheral Event System

Overview

- Event Routing Network
 - Message passing
 - No CPU
 - Event qualification

- Saves power
 - Main clock turned off while waiting for event
 - Peripheral clocks are enabled when needed
Peripheral Event System

Overview

• Event Routing Network
 • Message passing
 • No CPU
 • Event qualification

• Saves power
 • Main clock turned off while waiting for event
 • Peripheral clocks are enabled when needed
Peripheral Event System

• Direct routing of signals between peripherals
 • 2 cycle latency
 • Predictable
 • No lost events

• Eliminates CPU wakeups

• Examples
 • RTC event → ADC start conversion
 • Analog Comparator → adjust PWM period
SleepWalking and EventSystem Real Case

Reduces the overall power consumption

Reduces power consumption by 57%

1. RTC wakes AC to measure temperature
2. Temperature below threshold: Return to sleep back to sleep
3. RTC wakes AC to measure temperature
4. Temperature above threshold: Wakes-up CPU
5. Write message on LCD
picoPower in Action

- 90µA/MHz
- 1.5µs Wake-up
- Cortex-M4 with DSP Instructions
- High Code Density Flash & System performance
- Event System SleepWalking™
- DMA
- Efficient Power Management
- Digital Frequency Locked Loop (DFLL)
- 500nA

© 2013 Copyright Atmel Corporation
Peripheral Touch Controller (PTC)
Built-in Hardware Support for Touch

• Supports Buttons, Sliders, Wheels and Proximity
• Superb Sensitivity and Noise Tolerance
• Supports Mutual and Self Capacitive Touch
 • Self-calibrating, no tuning needed
 • No external components needed
• Wake-up from Power Down on Touch Detection
 • 250ms scan @ 10µA
Atmel Well Address Low Power System Design

• Atmel is a Market Leader in Low Power
 • Industry leading 8-bit picoPower devices
 • Worlds lowest power Cortex-M with picoPower SAM4L and SAMD20

• High performance CPU
 • Enable low power in complex applicaiton
 • Quick finish software runing then back to sleep mode
 • Lower power consumption at CoreMark™ benchmark

• PicoPower™
 • True 1.6V operation. All modules including Flash and analog working
 • Ultra fast wake-up
 • SleepWalking peripherals
Atmel Well Address Low Power System Design

• Built-in Hardware Support for Touch (PTC)
 • Touch Detection while CPU in sleep with lower power consumption

• High Integration. Reduce bom cost
 • Built-in lots peripherals for low power applications
 • RTC, DAC, Timers, ADC, Serial coms, USB, LCD, and so on
 • Ultra-low power oscillators
 • Clock failure protection
 • Windowed watchdog timer
 • Capacitors on power lines

• PicoPower™
 • True 1.6V operation. All modules including Flash and analog working
Atmel Embedded MPU Portfolio

400MHz ARM926
- SAM9N12
- SAM9CN12
- Security
- FS USB

SAM9G15
- LCD

SAM9G25
- EMAC

SAM9X25
- 2xEMAC
- 2xCAN
- LCD

SAM9G45
- EMAC
- LCD
- 2xEBI
- Security

SAM9M10
- +Video
- +Security

200+MHz ARM926
- SAM9R64
- SAM9RL64
- LCD
- HS USB
- Device

SAM9G10
- LCD

SAM9G20
- EMAC

SAM9263
- EMAC
- CAN
- LCD
- 2xEBI
Introducing SAMA5D3 Series

Offers high performance, low power and ease of use

- Up to 536MHz ARM® Cortex-A5 Core
 - VFPU
- <0.5mW in Low-power Mode
- <200mW in RUN @ 536MHz
- 32-bit DDR2, LPDDR2, LPDDR Memory Support
- MLC NAND with 24-bit ECC
- Gigabit EMAC with IEEE1588
- Up to 3 HS USB Ports
- Soft modem support
- LCD with Overlays
- Encryption Engine and Secure Boot
- BGA324 15x15mm
- 12-year Lifetime Commitment
Target Applications and Benefits

SAM5D3 is ideal for a wide range of industrial and consumer applications

| HMI and Control Panels | • High-resolution screen and/or complex animation achieved through superior bandwidth
| | • 32-bit DDR controller, up to 1328MB/s
| | • 24-bit LCD with overlays for HW accelerated image composition
| | • FPU for accelerated graphics processing
| Networking and Gateways | • Superior peripheral set
| | • Gigabit Ethernet with real-time time stamping (IEEE1588)
| | • 10/100 EMAC, 2x CAN, 7x UARTS, 2x SPI, 2x I2C
| | • High-bandwidth architecture
| | • Encryption engine for secure communication
| Imaging and Terminals | • CMOS sensor interface (ISI)
| | • ARM Cortex-A5 and FPU for state-of-the-art image processing
| | • Low power consumption in active (RUN) and static (low-power) modes
| Battery-Operated Applications | • <200mW typical in RUN mode @ 536MHz with all peripherals activated
| | • < 0.5mW typical in low-power mode with instant wake-up capability
| | • <2uA typical in backup mode
| | • LPDDR and LPDDR2 memory support
| | • Market-leading ARM Cortex-A5 core

Target Applications and Benefits
Application: Portable Fitness and Outdoor Equipment

• What:
 • Portable electronic equipment used to measure performance or provide navigation for fitness or outdoor activities such as running, cycling, hiking or golf

• Key Design Considerations of the Product:
 • Low active and standby power consumption
 • Reduce battery size and extend time between charges
 • Fast wake up to respond to user commands
 • Small footprint design
 • Minimize PCB and housing size for portability
 • Consumer-grade user interface
 • Direct support for TFT displays, capacitive touch, camera sensors, and audio
Application: Portable Fitness and Outdoor Equipment

• The Atmel SAMA5D3 series offers high processing power and high integration to address today’s portable fitness and outdoor design trends:

 • Low Active and Standby Power Consumption
 • Lowest active power consumption (<200mW at max speed)
 • Ultra-low power and standby mode with instant wake-up (<0.5mW)

 • Small Footprint Design
 • High integration includes up to 3 USB HS hosts with PHYs, ADC for battery monitoring and resistive touchscreens, I2S audio support and multiple SDIO interfaces

 • Consumer-grade user interface
 • Support for 24-bit TFT LCD with overlays for HW accelerated image composition
 • Floating point unit accelerates graphics processing
 • Image sensor interface to directly connect to CMOS / imaging sensors
 • Android and other popular GUIs available