ARM CoreLink™ and CoreSight™

System IP for the best ARM Cortex™ and Mali™ processor performance

- Power efficient system
 - Maximum cache & DDR utilization
 - Shortest path to memory

- System performance
 - End-to-end QoS provides b/w & latency per master

- Optimized system
 - CoreSight debug and performance profiling

- System assured
 - Designed together, verified together
CoreLink 400 System IP Available Now

Coherency
- CoreLink CCI-400
 - Full cache coherency
 - I/O coherency
- CoreLink ADB-400
 - For DVFS

Virtualization
- CoreLink MMU-400
 - OS level virtualization
- CoreLink GIC-400
 - Virtual interrupts
 - Multi-processor support

External Memory Sub-system
- CoreLink DMC-400
 - High DDR utilisation
 - Integrated with DDR3 PHY
- CoreLink TZC-400*
 - Secure regions

Rest of SoC Interconnect
- CoreLink NIC-400
 - Low latency
 - Routing efficiency

* TZC-400 available 1Q13
Wide Adoption of ARM System IP

- 50,000 downloads of AMBA specs in last 3 years
- 80+ licensees of NIC-301, 12+ licensees of NIC-400
- 15+ licensees of CCI-400
- 10+ licensees of DMC-400
- 30 licensees of CoreSight SoC-400
- Adopted across all market segments
Updates to Existing CoreLink 400 Products

- CoreLink NIC-400 smaller, faster, lower power
 - Hierarchical clock gating reduces idle power by 80%
 - TLX-400 Thin Links to reduce routing

- End-to-end QoS Virtual Networks across:
 - CoreLink NIC-400 + QoS-400 + QVN-400
 - Prevents blocking for higher multi master performance
 - CoreLink CCI-400r1
 - With enhanced throughput up to 25 GB/s @ 533MHz
 - CoreLink DMC-400r1
 - With integrated controller + PHY DDR3 28HPM

- CoreLink TZC-400 secures regions in DRAM
CoreLink CCI-400 Cache Coherent Interconnect

- First ARM interconnect to support AMBA 4 AXI Coherency Extensions (ACE)
 - Extends coherency to the system, multiple processors
 - Supports big.LITTLE™
 - Supports barriers, virtualisation, cache maintenance

- Fixed 5x3 topology, configurable for performance/area from 100k to 500k gates
 - 2x full ACE (CPU)
 - 3x ACE-Lite + DVM I/O coherent slaves
 - 3x master interfaces (2x DRAM + system)

- End-to-end QoS with NIC-400 and DMC-400
CoreLink NIC-400 Network Interconnect

- New in NIC-400:
 - 20% faster, 20% smaller than NIC-301
 - Addition of AMBA 4 AXI4 interfaces and interconnect switches
 - Long burst support, QoS signalling
 - + everything NIC-301 does, including support for AMBA 3 AXI, AHB, APB

- Hierarchical clock gating
- 90% reduction in idle and near idle power on LP

- Quality of Service Virtual Networks (QVN-400)
 - Separation of critical real-time traffic from high bandwidth low priority traffic
 - Removes head of line and cross stream blocking
 - End-to-end QoS with CCI-400 and DMC-400

- Advanced QoS Regulators (QoS-400)
 - New bandwidth sensitive dynamic regulator

- Thin Links (TLX-400)
 - Packetized links between NIC-400s, masters & slaves, reduces routing, example 65% less wires at 2x freq, same bandwidth
CoreLink DMC-400 Dynamic Memory Controller

- AMBA 4 Dynamic Memory Controller
 - Highly efficient interface from ARM systems to off chip LPDDR2 and DDR2 / DDR3
 - Delivers high bandwidth and low latency for high performance multimedia systems
 - Effective management of power in memory sub-system
 - End-to-end QoS with NIC-400 and CCI-400
 - Improves performance for Cortex-A5, Cortex-A9, Cortex-R and Mali processor- based designs

- Features and functionality
 - Configurable and programmable
 - Full support for advanced QoS-400 features
 - >90% max theoretical utilization of memory bus traffic
 - 1, 2 or 4 system ports and memory channels
 - Tight integration with ARM DDR3 PHY solutions
CoreLink MMU-400 and GIC-400

- I/O virtualization with distributed TLB maintenance messaging
- Stage 2 address translation for hypervisor support
- ARMv7 virtualization extension architecture compliant
- Generic Interrupt Controller for multiple Cortex-A15, Cortex-A7 clusters
- IRQs and FIQs securely managed by hypervisor for each OS
- ARMv7 virtualization extension architecture compliant
TZC-400 TrustZone Address Space Controller

- Extends secure memory with low cost external DRAM
- Prevents illegal access to protected memory regions
- Protection from software attacks
- Part of TrustZone® system
- Between CCI/NIC and DMC
- Applications: secure transactions with sensitive data, DRM

> Supports multiple interfaces (1, 2 or 4)
> Secures 8 memory regions
> Enables a secure data pipe
 - Setup read / write for specific masters
> Fast Path for low latency masters
> 256 outstanding transactions
CoreSight SoC-400

A debug and trace framework for ARM based SoCs

- Build the most effective on-chip visibility with CoreSight SoC IP
 - Configurable debug & trace infrastructure to address all markets and latest processors
 - SoC level time-stamping infrastructure

- Improve productivity with CoreSight SoC flow
 - Describe, check for compliance your CoreSight systems in minutes.
 - Automated validation of your CoreSight systems

- Unified flow for OEMs and silicon providers
 - Based on IP-XACT 1.4 & AMBA Designer

- A generic solution for all markets & processors
 - Integrate homogeneous & heterogeneous systems
 - Trace Macrocells become add-ons
CoreLink 400 Series for AMBA 3

- NIC-400 configurable interconnect
 - High performance and rest of SoC interconnect
 - AXI4, AXI3, AHB and APB4
- Thin Links to reduce routing
 - Between switches
- End-to-end Quality of Service with virtual networks and regulation
 - Separates low latency, real-time and high bandwidth masters
 - Prevents head-of-line and cross-stream blocking
- DMC-400 high efficiency, multi-channel memory controller
 - AXI3 and AXI4 supported
 - Unified QoS mechanisms
- MMU-400 assists hypervisor for I/O
 - Stage 2 address translation
CoreLink 500 System IP for 2013

Support for ARMv8-A Cortex-A57 and Cortex-A53 SoCs

- CoreLink CCN-504 Cache Coherent Network
 - Up to 4 clusters of Cortex-A57, Cortex-A53 and Cortex-A15
 - ~1 terabit/sec useable system bandwidth

- CoreLink DMC-520 Dynamic Memory Controller
 - 72-bit DDR4-3200 and interfaces directly with CCN-504

- CoreLink GIC-500 Generic Interrupt Controller
 - GICv3 Architecture for interrupt scaling with affinity routing
 - Message based interrupts and direct GIC↔CPU interface

- CoreLink MMU-500 System Memory Management Unit
 - 2 stages of address translation
 - System MMU Architecture v2 with new 64k page tables
 - Up to 48-bit addressing for IO device virtualization
Example High End Mobile Solution

- **DSP**
- **Cortex-R7**
- **Cortex-R7**
- **NIC-400**
- **AXI3**
- **Video Ctrl**
- **LCD Ctrl**
- **NIC-400**
- **AXI3**
- **TZC-400**
- **AXI3**
- **TZC-400**
- **AXI3**
- **Dual Cortex-A57**
 - **ACE**
- **Quad Cortex-A53**
 - **ACE**
 - **ACE-Lite**
- **Mali GPU**
 - **ACE-Lite**
 - **ACE-Lite**
- **GIC-500**
- **IPU**
 - **System Control Processor**
 - **Cortex-M3**
- **DMA-330**
 - **AXI4**
- **NIC-400**
 - **AXI4**
 - **AHB**
 - **Thin Link**
- **MMU-500**
 - **ACE-Lite**
 - **ACE-Lite + DVM**
- **CCI-400**
 - **ACE-Lite**
 - **ACE-Lite**
 - **ACE-Lite**
- **DMC-400**
 - **AXI4**
 - **NIC-400**
 - **Configurable: AXI4/AXI3/AHB/APB**
- **Thin Link**
- **PHY**
 - **DDR3/2 LPDDR2**
 - **PHY**
 - **DDR3/2 LPDDR2**
- **Other Slaves**
- **Other Slaves**
Growing Importance of Virtualization

Virtualization hardware supported in ARMv7-A, ARMv8-A

“Virtualization is execution of software in an environment separated from the underlying hardware resources”

Virtualization use cases

IP obfuscation; IP protection; environment duplication; multiple guest-OS support under hypervisor control
Virtualization with MMU-500

- Nested translation
 - Stage 1 and Stage 2
 - Supports virtual address (VA) programming of devices
 - Scatter/gather function

- Adds ARMv8 support
 - To enable interoperability with Cortex-A57 & Cortex-A53
 - Also supports Cortex-A15 and Cortex-A7 page table formats
Virtualization with MMU-500

- Nested translation
 - Stage 1 and Stage 2
 - Supports virtual address (VA) programming of devices
 - Scatter/gather function

- Adds ARMv8 support
 - To enable interoperability with Cortex-A57 & Cortex-A53
 - Also supports Cortex-A15 and Cortex-A7 page table formats

- Distributed TLBs
 - To increase TLB efficiency and to save power and area
 - Point-to-point connection
 - \(n \times 1:1 \) TLB ↔ TCU interfaces

ARM System MMU Terminology:

- **TBU** = Translation Buffer Unit (containing the TLB)
- **TCU** = Translation Control Unit (containing the page table walker)
Generic Interrupt Controller for ARMv8

- GIC-500 supports 48 CPUs
 - Cortex-A57 and Cortex-A53
 - GICv3 architecture
- Shared Peripheral Interrupts
 - Up to 960 SPIs
 - Direct to AL0 or all
- Message based interrupts
 - Lower cost per interrupt
 - Direct to AL0
 - MSI(-X) support
 - VMs can directly program peripherals to reduce hypervisor overhead
- Affinity level routing
 - Allows for scalability
 - Consolidated as one monolithic block for GIC-500

[Diagram of Interrupt Re-distribution – Logical View]

- SPI = Shared Peripheral Interrupt (wired interrupt)
- LPI = Local Peripheral Interrupt (message based interrupt)
High Performance, Efficient, Cache Coherent

Up to 4 cores per cluster

Heterogeneous processors – CPU, GPU, DSP and accelerators

4 fully coherent clusters

128-bit bus @ CPU frequency

Integrated L3 cache

Dual channel DDR3/4 x72

Usable system bandwidth: ~ 1 Terabit/second

CoreLink™ CCN-504 Cache Coherent Network

8/16MB L3 cache

GIC-500

Quad Cortex-A57 L2 cache

Quad Cortex-A57 L2 cache

Quad Cortex-A57 L2 cache

Quad Cortex-A57 L2 cache

10-40 GbE

PCle

DPI

Crypto

USB

SATA

NIC-400

MMU-500

18 AMBA ACE-Lite interfaces for I/O coherency

To minimize snoop traffic

NIC-400 Network Interconnect

Flash

Peripheral address space

CoreLink™ DMC-520 x72 DDR4-3200

CoreLink™ DMC-520 x72 DDR4-3200

Snoop Filter

8/16MB L3 cache

Peripheral address space

The Architecture for the Digital World®
Scalable System Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>4 ports up to 16 cores Cortex-A57, Cortex-A53 and Cortex-A15</td>
</tr>
<tr>
<td>IO</td>
<td>18 ports: AMBA® 4 AXI4/ACE-Lite interfaces</td>
</tr>
<tr>
<td>DDR</td>
<td>2 channels supported with CoreLink DMC-520</td>
</tr>
<tr>
<td>RAS</td>
<td>ECC on RAMs and parity on transport</td>
</tr>
<tr>
<td>QoS</td>
<td>QoS regulation and priority management</td>
</tr>
<tr>
<td>Security</td>
<td>TrustZone aware</td>
</tr>
<tr>
<td>Low Power Support</td>
<td>Extensive clock gating, leakage mitigation hooks, Granular DVFS and CPU shutdown support, Partial or full L3 cache shutdown, Retention modes</td>
</tr>
</tbody>
</table>
Security, Reliability, Quality of Service

- 5th Generation ARM DMC targeting >95% DRAM efficiency
 - ECC and RAS features
 - Performance Profiling
 - TrustZone Address Space Control
- High efficiency through close integration with CCN-504
 - System wide QoS, designed and verified with ARM CPUs

RAS = Reliability, Availability, Serviceability
High Performance Memory Access

<table>
<thead>
<tr>
<th>CoreLink DMC-520</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Interfaces</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PHY</td>
</tr>
<tr>
<td>Memory</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Low Power Support</td>
</tr>
</tbody>
</table>
CoreLink End-to-End QoS Architecture

Enterprise Requirements
- “Bursty” datapath
 - High peak bandwidth
 - Multiple interfaces
- “Compute intensive” Control Path
 - Lowest latency requirements
- “Latency Sensitive” Air interface
 - Predictable Latency

CoreLink End-to-End QoS
- QoS field for every transaction
 - Fixed, programmable or regulated
 - End-to-End propagation
- Programmable QoS mechanisms
 - Regulation of all traffic on ingress
 - Bandwidth management
 - Latency management
- QoS re-ordering and arbitration
 - Interconnect ingress
 - Non-blocking transport
 - L3 cache
 - DMC
Both ARMv7 & ARMv8 processors are supported by CoreSight SoC-400.

Support for Cortex-A53 & Cortex-A57 available from core’s LAC release.

Embedded Trace Macrocells (ETM) provided with processors.
Summary

- CoreLink 400 series is available now
 - Coherency support for Cortex-A15, Cortex-A7 and the latest Cortex-A50 series
 - NIC-400 Network Interconnect for Cortex-A and Cortex-R series processors

- CoreLink 500 series offers new system scaling
 - 16 core support in CCN-504 Cache Coherent Network for enterprise applications
 - Enterprise DDR3/4 memory support with DMC-520
 - ARMv8 page stable support with MMU-500

- ARM CoreLink System IP offers the best ARM Cortex and Mali™ processor performance
 - Designed together, validated together